PHYSICAL REVIEW E

VOLUME 49, NUMBER 2

FEBRUARY 1994

Hamiltonian analysis of the transition to the high-gain regime
in a Compton free-electron-laser amplifier
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The dynamics of a Compton free-electron-laser amplifier is described by a Hamiltonian treatment.
The structure of the 2N-dimensional phase space, N being the number of electrons, and the stability of
the critical points are investigated with the detuning as control parameter. It is shown that the small-
gain and high-gain regimes are characterized by different phase-space topologies. In particular, the tran-
sition to the high-gain regime is described as a bifurcation in which two well-defined fixed points
coalesce. To test the validity of this description, the period of the saturation oscillation of the radiation
field amplitude is evaluated by means of the Lie-transform method.

PACS number(s): 41.60.Cr, 03.20.+i

I. INTRODUCTION

In a Compton free-electron-laser (FEL) amplifier, a
low-density, highly relativistic electron beam, injected
along the axis of a wiggler, can amplify a copropagating
radiation field [1,2]. Under proper conditions, the elec-
trons bunch on the scale of a radiation wavelength, and,
starting from a negligible initial value, the field amplitude
exhibits as a function of the wiggler length a lethargic
stage followed by an exponential growth up to saturation,
where nearly periodic large-amplitude oscillations set in.
Here, we denote this overall behavior high-gain regime,
in contrast to the small-gain regime where the electrons
behave as almost free particles and the radiation field os-
cillates close to its initial value for any interaction length.
In the analysis of the Compton FEL dynamics, a suitable
control parameter is the (dimensionless) detuning 8§ of the
initial average electron energy 7, from the resonance
value yz. The linear stability analysis of the FEL equa-
tions around an initial (equilibrium) condition with a
nearly unbunched, monoenergetic beam and no field exci-
tation [3] shows the existence of an instability threshold
at a well-defined critical 8 value 8.=(%)!3. From the
numerical integration of the full FEL equations, it turns
out that the high-gain regime develops from the linearly
unstable regime characterized by 8 values smaller than
8c. The small-gain regime corresponds to the linearly
stable regime at 8 values larger than §.

The dynamics of the system has been described by
different theoretical approaches [4,5]. Here, we consider
the Hamiltonian treatment of the Compton FEL [6]. In
the Hamiltonian framework, one basic problem remained
unsolved, i.e., no clear picture of the transition occurring
in the behavior of the system at the critical detuning
8=06, has yet been done. A preliminary result in this
direction was obtained only for the limiting case of one
degree of freedom [7]: the analysis of the one-electron
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phase space shows a sharp change in the electron orbit
topology, occurring just at the value §=8,. The one-
particle Hamiltonian relevant to this process is also found
in the analysis of other physical phenomena and has been
thoroughly analyzed in different contexts [8,9].

In this paper, we refer to the system of N electrons
self-consistently coupled with the radiation field, de-
scribed by a Hamiltonian with N degrees of freedom, and
investigate the topological changes of the phase-space
structure at varying 6. We show that (in analogy with
the one-particle case) the transition from the small- to the
high-gain regime is connected to a bifurcation in the 2N-
dimensional phase space, where the only hyperbolic point
present in the system disappears, and the dynamics is
determined by the presence of one elliptic point. This re-
sult is obtained by means of the stability analysis of the
singular points, and is confirmed by direct numerical in-
tegration of the electron motion. To emphasize the role
of the main singular points in each regime, a small dissi-
pation is introduced in the system.

The Hamiltonian description of the system allows one
to evaluate quantitatively some of its characteristics by
means of well-developed analytical techniques. We con-
sider here the computation of the (spatial) periodicity of
nonlinear oscillations in the saturation regime, which is
generally missed in the description by other theoretical
models. The relevant analysis is performed by means of a
canonical perturbation technique, the Lie-transform
method [10]. The verr good agreement of the obtained
results with the numerical simulation may be taken as a
confirmation of the validity of our approach.

The paper is organized as follows. In Sec. II the Ham-
iltonian description of FEL dynamics is introduced. Sec-
tion III is devoted to the analysis of the phase space of
the system. Section IV contains the explicit computation
of the period of nonlinear oscillations in the high-gain re-
gime. Concluding remarks are presented in Sec. V.

1603 ©1994 ‘1 he American Physical Society
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II. HAMILTONIAN MODEL
OF A COMPTON FEL AMPLIFIER

A suitable starting point for the description of the
dynamical regimes of a FEL is given by the evolution
equations for the coupled system of N electrons with rela-
tivistic velocities in the z direction, and a copropagating
quasimonochromatic, circularly polarized radiation field,
interacting during the passage in a helical wiggler [11,12].
In compact dimensionless form the equations read [5]

9 _p
az 7’
iad [ 4 exp(if;)+c.c.] (1)
—L=—[Aexplif;)+c.c.],
dz Pv
d—A=(exp(—i0))+i8/T,
dz
with j=1,...,N. The symbol { ) corresponds to averag-

ing over the N particles. The jth electron is described by
the variables 0;, P;, where 6=(k +k()z —wt —2kypdz
is the electron phase relative to the ponderomotive
potential (radiation + wiggler), and P;=(1/p)(y;
—{y)9)/{y ), is the relative energy varlatlon, y; being
the electron energy and (y ), the initial average value.
The evolution of the system is given in terms of the di-
mensionless longitudinal coordinate Z=2k,pz. The field
is described by the complex dimensionless vector poten-
tial A=|Alexp(i¢)  with  real  amplitude
| A|=eE /[mcw,(pyg)'"*], where E is the rms electric
field, a)p=(41re£n /m)'? is the plasma frequency, yp is
the dimensionless resonant electron energy

r=Lk(1+a3)/2ky]'%, ay=eB,/(kymc?) is the undu-
lator parameter, and B, the rms wiggler field. Here,
o=kc is the central radiation frequency, k, is the wave
number associated with the spatial wiggler periodicity, &
is the detuning parameter

s— 1 (7)o~ 7k
prr
and p is the FEL parameter
2/3
—_1 |% %
P Yr | 4 koc

The main assumptions underlying Eqgs. (1) are (i) one-
dimensional dynamics; (ii) steady-state operation, i.e.,
negligible propagation effects during the interaction; (iii)
slowly varying envelope approximation for the field evo-
lution; (iv) Compton regime, typical of highly relativistic
low-density electron beams.

The system (1) depends on a single dimensionless pa-
rameter 8. Moreover, it admits a constant of motion,

(P)+|A|*=const , )

which describes the energy conservation of the system,
and rules the energy transfer between the electrons and
the radiation field.

Equations (1) admit a stationary solution for an initial
condition with a monoenergetic, unbunched beam, and

no field excitation:

Pj;=0, (exp(—i6)),=0, A,=0. 3)

Linearizing Egs. (1) around the equilibrium condition (3),
it is found that the system is stable when 6 > &, and un-
stable when 6<5C, where the critical value of detuning
parameter 8.=(2)!/3 is the instability threshold for ex-
ponential field ampllﬁcation [3].

The system (1) can be written in a Hamiltonian formal-
ism. Actually, taking into account the constant of
motion (2), we can introduce the following autonomous
Hamiltonian function dependent on 2N variables g;,p;,
(j=1,...,N):

N
H(qy, . sqn;P15- PN %2 F+2[A—(p)]'/?

N
X 3 sing; , 4)
j=1

where
q;=6;+¢, p;j=P;+5, (5)
and
A=58+]43. (6)
Hamilton’s equations of motion are
q',:a—H=p'_ { Sing)
J dp; vA—{(p)’ -
. H
pi=- gq =—2VA—{p) cosq;
J
for j=1,...,N, where dots mean differentiation with

respect to the variable Z, and the initial momentum con-
dition now reads {p ),=8.

Note that the field variables | 4| and ¢ do not enter ex-
plicitly in Eq. (4), and can be obtained by means of Eq.
(2), |A|*=A—(p), and by the equation =4, +8—p;.
Then, the Hamiltonian (4) depends on the only parameter
A, which represents the total energy of the system. It de-
scribes a system of N pendulums coupled by the con-
sistent field, which depends only on the average {p).
This Hamiltonian function will be the basis of the subse-
quent analysis of the FEL dynamics.

Hamilton’s equations have been solved numerically for
a representative set of particles with initial conditions
corresponding to a weak electric field, and an unbunched
monoenergetic electron beam, i.e., conditions close to
Egs. (3): p;p=3, | A]<<1, and uniform phase distribu-
tion (in the following we refer to initial conditions of this
kind). The behaviors of the squared field amplitude | 4|2
and of the average quantity { sing ), which describes the
phase bunching of the electrons, as a function of Z have
been analyzed both in the stable and unstable regime.
When 8> 8 (stable case), the system evolves, remaining
always close to the initial condition (3). The energy of
the particles does not vary appreciably, and a nearly un-
bunched electron beam remains unbunched (Fig. 1).
When 6 <8, (unstable case), the scenario is completely
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FIG. 1. Small-gain regime: behavior of the dimensionless
squared field amplitude | 4]2>=A—(p) (a), and of { sing ) (b) as
a function of the longitudinal dimensionless coordinate zZ. The
parameters are =5, and | 4/3=2X107*.

different, and cooperative effects show up. For large
enough Z, both the field amplitude and the electron
bunching parameter exhibit an exponential growth up to
a peak value, followed by a nearly periodic regime (Fig.
2).

III. PHASE-SPACE ANALYSIS

To explore the relationship between the different FEL
regimes and the relevant phase-space structure, the
phase-space topology of the Hamiltonian (4) has been in-
vestigated considering the stability of the fixed points,
which are the stationary solutions of the system (7), i.e.,
of the following system of 2N equations dependent on the
parameter A:

__{sing) —0 8
P] vﬁp_; ’ ( a)
2V A—ZpScosqj=O , (8b)

with j =1,...,N. The phase values of a fixed point g; are
immediately obtained by Egs. (8b), and read g; =zt /2.
As can be seen from the investigation of Egs. (8a), all the
action values coincide, p;=p; =P, and are determined by
the mean value a=( sing ), where a=(N —2k)/N, and
k(k =0,1,...,N) is the number of qj’s corresponding to
the angle —7/2, and N —k to w/2. For given a and A,
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FIG. 2. High-gain regime: behavior of the dimensionless
squared field amplitude | 4|2 (a), and of ( sing ) (b) as a function
of the longitudinal dimensionless coordinate zZ. The parameters
are =0, and | 4[3=2X10"%.

the solutions of the system (8) can be expressed in terms
of the roots of the cubic equation

Al—AA+a=0, 9)

where A=V A—p, with A>0, and |a|<1. For A<O0,
Eq. (9) has one solution only for ¢ <0. For 0SA<Ag,
where A =( ?77 )13 the equation has one solution for
a <0, two solutions for 0<a<(A/A.)*? and no solu-
tions for (A/A¢)32<a<1. For A> A, there is still one
solution for a <0, and two solutions for a>0. These re-
sults are summarized in Fig. 3, where the solutions of Eq.
(9) are plotted versus a for different values of the parame-
ter A.

Note that for given a- and A-value solutions of Eq. (9),
there exist (') fixed points corresponding to the possible
angle permutations. The only points which are unequivo-
cally determined are those with all g;=—u/2 or 7/2,
and a=—1 or +1, respectively. The two points with
a=1 exist only for A>A., they merge together at
A=A, and then disappear. The same behavior is found
for positive A above the threshold value A, at
a=(A/Ac)"?, so that the number of fixed points de-
creases with decreasing A. However, the bifurcation
occurring at A=A, and a=1 seems to be the main one.

The linear stability of the fixed points of the Hamil-
tonian (4) can be investigated linearizing the equations of
motion (7) around the singular points. Setting
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FIG. 3. Solutions of the cubic equation (9), for different A
values. A and a characterize the fixed point coordinates, p, g,
being A=V A— P,and a={(sing). The curves refer to the fol-
lowing cases: a, A<0; b, A=0; ¢, 0<A<A¢; d, A=Ag, e,
A> Ac. The elliptic point corresponds to a= —1. Curve d cor-
responds to the appearance of the hyperbolic point. In curve e
the hyperbolic point corresponds to a=1 and to the largest
value of A.

q;=g;t0q;, and p;=p+38p; (j =1,...,N), the linearized
system reads

a N 6
ANA3 z’l Pr

8, =+2A8q; ,

8¢;=bp;
(10)

where the * sign corresponds to g;==xm/2. The linear
stability of each fixed point can be determined by the ei-
genvalues A of the linear operator defined by system (10)
[13], which are solutions of the eigenequation

()\’2_2A)N—k—l()\’2+2A)k—l

@

X s [=0. ap
2A

4 a? 2 2
A +F7» —4A

The eigenvalues determined by the roots of the first two
factors in Eq. (11) are always real and pure imaginary, re-
spectively, independent of the values of A. With A vary-
ing, the main features of this dynamical system are de-
scribed by the last factor in Eq. (11), which contains the
coupling among the electrons due to the self-consistent
field.

The most relevant cases are those with a=—1,+1,
which correspond to kK =N, 0, respectively. For a=—1,
Eq. (11) reads

(A242A)V 1 xz+2A+X1; =0. (12)

All the roots of Eq. (12) are purely imaginary for any A
value, and read A==%iV2A+1/A% and )»=ii\/%\,
multiple N —1. Thus the point corresponding to a= —1
is elliptic. For a=1 (and A= A.), Eq. (11) reads explicit-
ly

(A2—2A)V 1

}»2—2A+X12— =0. (13)
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FIG. 4. Same as in Fig. 1, when a dissipative term is added to
the equations of motion. The damping parameter 7 is equal to
0.1.

For A>2"'3, all the ecigenvalues are real:
A=1V2A—1/A?% and A=+V2A, multiple N —1. The
fixed point is hyperbolic and corresponds to the upper
branch of Eq. (9). For A<27'3, ie., on the lower
branch of Eq. (9), there is an elliptic point only when
N=1. For N >1, there are 2N —2 real eigenvalues
A=1V2A and two imaginary eigenvalues
A=+iV'1/A>—2A, and the singular point is neither el-
liptic nor hyperbolic.

When |a|#1, some eigenvalues are real and some com-
plex, and the corresponding singular points can never be
stable. Moreover, we note that the last factor in Eq. (11)
can be written

da

A | (14)

4 a’ 2
}.+F}\.+2

Then, the coalescence of two critical points (occurring at
da/d A=0) implies the existence of the double root
A=0.

Summarizing the obtained results, for N >1 we find
only a hyperbolic point for A=A, at a=1 and
A>2713 and an elliptic point at a=—1, for any A
value. It can be shown that this elliptic point is a
minimum for the Hamiltonian (4).

We note that the critical A; value coincides with the
threshold value 6. obtained in the stability analysis
around a vanishingly small field amplitude, mentioned in
Sec. II. From the above analysis of the phase space, we
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can then conclude that in the small-gain FEL regime, the
phase-space topology is governed by the presence of the
(only) hyperbolic point. The transition to the high-gain
regime corresponds to the occurrence of a bifurcation,
and to the subsequent disappearance of the hyperbolic
point. As a consequence, in the high-gain regime the sys-
tem is strongly influenced by the presence of the elliptic
point. Once the main topological modification of the
phase space has occurred, subsequent bifurcations (at de-
creasing A) of nonpure hyperbolic fixed points introduce
only minor changes in the behavior of the system.

To test the attractor properties of the elliptic point
when the hyperbolic point disappears, we have investigat-
ed the case in which a term representing (formally) a dis-
sipative process has been introduced in the system, add-
ing the term —n(p; —pj), with 7 positive and small, to
the equation for the evolution of p; in Eqs. (7). Note that
the rate of contraction of phase-space volume is given by
Nm. The behavior of the system has been analyzed nu-
merically in the same cases already presented in Figs. 1
and 2, relevant to the small- and high-gain regime, re-
spectively. For A> A, (small gain), both the field ampli-
tude and the bunching parameter perform damped oscil-
lations around the initial values, with a frequency very
close to that of the nondissipative case. For A <A (high
gain), | 4|%(Z) exhibits the same exponential increase as in
the nondissipative case, and then performs damped oscil-
lations around the value A2=A—p, (p, being the
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FIG. 5. Same as in Fig. 2, when a dissipative term is added to
the equations of motion. The damping parameter 7 is equal to
0.1. The dotted line in (a) represents the squared field amplitude
| 4|*=A2=A—p,, determined by the value of the elliptic point
momentum p,.

momentum of the elliptic point), with A, solution of the
equation AJ—AA,—1=0. At the same time, ( sing)
goes to — 1, which corresponds to the phase value —/2
of the elliptic point. These behaviors are shown in Figs. 4
and 5, and represent a confirmation of the given picture
of the phase-space structure.

From the above analysis, we can state that in the satu-
ration regime, starting from the chosen initial conditions,
after the lethargy the electron trajectories in phase space
lie around the elliptic point, i.e., the minimum of the
Hamiltonian. This can occur because of the disappear-
ance of the hyperbolic point.

IV. PERIOD OF NONLINEAR OSCILLATIONS
IN THE SATURATION REGIME

To give a more detailed insight into the behavior of the
system, we refer here to the saturation regime and com-
pute the period of the spatial nonlinear oscillations of the
system using the canonical perturbation technique.

We expand the Hamiltonian function (4) in p; around
the elliptic point of coordinates g;=—m/2 and p;=p,

(j=1,...,N), and obtain to first order
pl N x} N
H= N—+ 2 T_ZA" D, cosp;
j= j=1
——l—zxj(l—(coqu)), (15)
A, &

where x;=p;—p,, and ¢;=gq;+m/2. The second and
the third term in the right-hand side of Eq. (15) describe
N identical pendulums driven by the term 2A,. The last
term describes the coupling between the pendulums, and
will be considered in the following as a perturbative term.

To describe the dynamics of the system in saturation,
we look for the invariants of the system via the Lie-
transformation method, and proceed as in the analysis of
the nonlinear libration motion of the pendulum [10]. The

Hamiltonian (15) is expanded in @; (around @; =0), ob-
taining
H=NH,+H,+H, , (16)
where
_pe /2 2Ae ’
2 2
= 2 +2A q;’ , 17
4
_ P ‘PJ
=—24, 2 TR ]
2 4
11 P Pi
A N 2} 2! 4! +

The function H, represents N harmonic oscillators of
frequency wy=12A,, and H, contains both the non-
linear corrections of the oscillators and the coupling
terms. Transforming to action angle variables of the har-
monic oscillator, I, ¥,
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cpj=\/msimpj, xj=\/%;1_j cost; , (18)
the functions H, and H, read
HyD=w,31;, (19)
J
H(Ly)=-— gljzsin“tpj —é——%wolj sin’); ]
22 1 = 2
_ o7 v %Ii\/lj sin“y; cosy;
X 1~L1i sin®4, (20)
60,

Now, following the Lie-transformation method up to
second order, the Hamiltonian H (I,¢) is transformed
into a new Hamiltonian H which is a function of the ac-
tions only,

H=NH,+H,+(H),+1{[w,H]), . (1)

In Eq. (21), the symbol ( ), denotes averaging over the
angles ¢, [w,H ] is the Poisson bracket, and w, is a Lie
generating function determined by the equation

N awl

@ 3,

=1 9Y;
The explicit computation of H is rather lengthy and re-

quires some analytical effort. In the physically relevant

limit N >> 1, the following simple expression is found:

=(H,),—H, . (22)

HW,,....,Jy)=N He+m0<J)—%<J2)—2%)8((J>)2

_ 1 3y L 2
256w0<J ) 8wz)(J)(J Y.

(23)

Here J,,...,Jy are constants of the motion. In the right-
hand side of Eq. (23), the third and the fifth term are the
well-known terms describing the nonlinear pendulum,
while the fourth and the last terms come from the cou-
pling, and characterize the system under consideration.
The expression (23) for H is correct up to the third power
of the actions. Moreover, it has been checked that the
neglected terms in the Hamiltonian, coming from
higher-order expansions in both the variables x; and ¢;,
give contributions to Eq. (23) which are vanishingly small
in the limit N >>1.

To compute the spatial frequency of the nonlinear os-
cillations, we assume that due to the symmetry of the sys-
tem all the actions are equal, J,=--- =Jy=J, and
evaluate J by the constancy of the Hamiltonian,

6

1 @
= -+
2 32

=w, +0(4]3) . (24)

We finally obtain the following expression for the fre-
quency of the oscillations in the saturation regime:

;
\\‘\Nﬂﬁ,—r
R
— 3
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0 L
0.0 0.5 "o " N

d

FIG. 6. Period T =27 /& of the nonlinear spatial oscillations
of the field amplitude in the saturation regime as a function of
the detuning parameter 8. The solid line represents the analyti-
cal result corresponding to Eq. (25), the dots represent the nu-
merical results obtained by direct integration of the equations of
motion, and the dashed line is the period T(=2w/w, of the har-
monic oscillators.

(25)

Note that @ is a function only of & in the limit of negli-
gible initial wave field excitation (i.e., for | 4|3=0). The
comparison between the analytical expression of the fre-
quency (25) and the numerical results obtained by direct
integration of the equations of motion (7) is shown in Fig.
6. The agreement between the analytical and the numeri-
cal values is fairly good. This confirms the accuracy of
our global picture of the process.

V. CONCLUSIONS

The analysis of the Compton FEL dynamics by means
of an autonomous Hamiltonian with N degrees of free-
dom has been performed referring to an initial state
characterized by a monoenergetic unbunched electron
beam. It is found that the transition from small- to high-
gain regime corresponds to a bifurcation in the 2N-
dimensional phase space, where the only hyperbolic point
of the system disappears.

We have shown that in the high-gain regime the dy-
namics is governed by the presence of a single elliptic
point, which behaves as a simple attractor when dissipa-
tion is introduced in the system. In saturation, the sys-
tem performs nonlinear oscillations around the elliptic
point. The period of these oscillations has been comput-
ed by a canonical perturbation technique, obtaining a
very good agreement with numerical simulations and
substantiating the validity of our approach.

The present analysis gives insight into the nature of
saturation in wave particle instabilities which can be
characterized by a Hamiltonian formalism, and, besides
FEL’s, may be relevant to other systems such as gyrot-
rons, traveling-wave tubes, and beam-plasma instabilities.
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